Divisor de cero

En álgebra abstracta, un elemento no nulo a de un anillo A es un divisor de cero por la izquierda si existe un elemento no nulo b tal que ab = 0. Los divisores de cero por la derecha se definen análogamente. Un elemento que es tanto un divisor de cero por la izquierda como por la derecha recibe el nombre de divisor de cero. Si el producto es conmutativo, entonces no hace falta distinguir entre divisores de cero por la izquierda y por la derecha. Un elemento no nulo que no sea un divisor de cero ni por la izquierda ni por la derecha recibe el nombre de regular.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *