Conjetura de Goldbach

Estoy seguro de que a ustedes les habrá pasado alguna vez que se tropezaron con una idea pero no estaban tan seguros de que fuera cierta y se quedaron un rato pensándola. Si no les ocurrió nunca, empiecen ahora, porque nunca es tarde. Pero lo maravilloso es poder «entretener» en la cabeza de uno algún problema cuya solución sea incierta. Y darle vueltas, mirarlo desde distintos ángulos, dudar, empezar de nuevo. Enfurecerse con él. Abandonarlo para reencontrarlo más tarde. Es una experiencia inigualable: se las recomiendo.
En la historia de la ciencia, de las distintas ciencias, hay muchos ejemplos de situaciones como las que expuse en el párrafo anterior. En algunos casos, los problemas planteados pudieron resolverse sencillamente. En otros, las soluciones fueron mucho más difíciles, llevaron años (hasta siglos). Pero como ustedes ya sospechan a esta altura, hay muchos de los que todavía no se sabe si son ciertos o falsos. Es decir: hay gente que ha dedicado su vida a pensar que el problema tenía solución, pero no la pudieron encontrar. Y otros muchos que pensaron que era falso, pero no pudieron encontrar un contraejemplo para exhibir.
De todas formas, resolver alguna de las que aún permanecen «abiertas», traería fama, prestigio y también dinero al autor. En este capítulo quiero contar un poco sobre una conjetura conocida con el nombre de «La Conjetura de Goldbach». El 7 de junio de 1742 (piensen entonces que ya pasaron 263 años), Christian Goldbach le escribió una carta a Leonhard Euler (uno de los más grandes matemáticos de todos los tiempos), sugiriéndole que pensara una demostración para la siguiente afirmación:

Todo numero par positivo, mayor que dos, se puede escribir como la suma de dos números primos

Por ejemplo, veamos los casos más fáciles:
4 = 2 + 2
6 = 3 + 3
8 = 3 + 5
10 = 5 + 5
12 = 5 + 7
14 = 7 + 7 = 3 + 11
16 = 5 + 11
18 = 7 + 11 = 5 + 13
20 = 3 + 17 = 7 + 13
22 = 11 + 11
24 = 11 + 13 = 7 + 17
864 = 431 + 433
866 = 3 + 863
868 = 5 + 863
870 = 7 + 863
y así podríamos seguir.
Hasta hoy (agosto de 2005), se sabe que la conjetura es cierta para todos los números pares que sean menores que 4 x 10 13 . La novela Uncle Petros & Goldbach’s Conjecture del escritor australiano (aunque creció en Grecia) Apostolos Doxiadis, publicada en 1992, en griego y traducida a diversos idiomas en el año 2000, es la que promovió que las compañías editoras Faber y Faber de Gran Bretaña y Bloomsbury Publishing de Estados Unidos ofrecieran un millón de dólares a quien pudiera resolver la Conjetura. Doxiadis es también reconocido como uno de los iniciadores de las novelas con «trama matemática» y ha dirigido además teatro y cine. Pero lo que importa en este caso es que la popularidad alcanzada por la novela devino en la oferta (que nadie pudo reclamar aún) de los editores.
Hay otra Conjetura también planteada por Goldbach, conocida con el nombre de «La Conjetura Impar de Goldbach'», que dice que todo número impar mayor que cinco se escribe como la suma de tres números primos. Hasta el día de hoy (agosto del 2005) también permanece como un problema abierto de la matemática, aunque se sabe que es cierta hasta números impares de siete millones de dígitos. Si bien toda conjetura puede resultar falsa, la opinión «educada» de los expertos en teoría de números es que lo que pensó Goldbach es cierto y sólo es una cuestión de tiempo hasta que aparezca la demostración.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *