¿Cómo construir un ángulo recto?

A esta altura, todo el mundo (¿todo el mundo?) puede recitar el teorema de Pitágoras: «En todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos» : Ahora bien: el teorema habla sobre la relación que hay entre la hipotenusa y los catetos en un triángulo rectángulo. Se supone, entonces, que el triángulo que nos dieron es rectángulo.
¿Qué pasaría al revés? Es decir: si un señor llega con un triángulo y dice:
«Vea. Yo acabo de medir la hipotenusa y los catetos de este triángulo y resulta que cuando sumo los cuadrados de los catetos me da el mismo número que el cuadrado de la hipotenusa».
La pregunta entonces es: ¿Es rectángulo el triángulo del señor? El teorema de Pitágoras no dice nada de esto. El teorema hace afirmaciones cuando uno sabe que tiene un triángulo rectángulo. Pero en este caso, no dice nada. No se puede aplicar el teorema.
En todo caso, lo que uno tiene que hacer es preguntarse si es verdad que el señor del párrafo de arriba tenía un triángulo rectángulo sin que él lo supiera. Y el resultado es cierto. Cada vez que en un triángulo se observa esa relación entre los tres catetos, es porque el triángulo debe ser rectángulo (aunque yo no escriba la demostración aquí, es un buen ejercicio para pensar). Lo interesante de esto es que con este resultado, que es el recíproco del teorema de Pitágoras, es posible construirse triángulos rectángulos.
¿Cómo hacer? Bien. Tomen una cuerda de 12 metros (o 12 centímetros, pero creo que es mejor si se lo hace con una cuerda más manejable). Ustedes saben que 3 2+ 4 = 5 .
Es decir, esa relación dice que si yo me fabrico un triángulo con lados que midan 3, 4 y 5 respectivamente, entonces el triángulo, de acuerdo con lo que vimos recién, tiene que ser rectángulo. Entonces, los invito a hacer lo siguiente. Apoyen la cuerda en el piso. Pongan un libro o la pata de una silla para que apriete una de las puntas. Estiren la cuerda. Cuando llegó a los tres metros pongan otro objeto para que sostenga la cuerda en ese lugar y ustedes giren, avancen en otra dirección cualquiera, hasta que hayan recorrido ahora cuatro metros con la cuerda. Allí vuelvan a poner algo que la sostenga y giren otra vez pero ahora apuntando en la dirección en la que pusieron la otra punta de la cuerda. Cuando lleven la segunda punta para que coincida con la primera, manteniendo las distancias (tres, cuatro y cinco metros respectivamente), el triángulo que se habrá formado tiene que ser rectángulo. En realidad, ésta era la forma en la que los griegos construían ángulos rectos. Y lo mismo sucede con la gente de campo, que sin necesidad de conocer este teorema, ni tener escuadras, delimita su terreno construyendo ángulos rectos de esta forma.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *