Biografía de Pitágoras

Pitágoras de Samos es considerado un profeta y místico, nacido en Samos, una de las islas Dodecanesas, no muy lejos de Mileto, el lugar en donde nació Tales. Algunos pintan a Pitágoras como alumno de Tales, pero eso no parece muy probable debido a la diferencia de casi medio siglo entre ambos. Lo que sí es muy probable es que Pitágoras haya ido a Babilonia y a Egipto, e incluso a la India, para tener información de primera mano sobre matemática y astronomía, y eventualmente, también sobre religión.
Pitágoras fue, casualmente, contemporáneo de Budha, de Confucius y de Lao-Tze, de manera que el siglo estaba en plena ebullición tanto desde el punto de vista de la religión, así como de la matemática.
Cuando retornó a Grecia, se estableció en Crotón, en la costa sudeste de lo que ahora es Italia, pero en ese momento se conocía como «La Magna Grecia». Ahí estableció una sociedad secreta que hacía recordar un culto órfico salvo por su base matemática y filosófica.
Que Pitágoras permanezca como una figura oscura se debe en parte a la pérdida de todos los documentos de esa época. Algunas biografías de Pitágoras fueron escritas en la antigüedad, inclusive por Aristóteles, pero no sobrevivieron. Otra dificultad en identificar claramente la figura de Pitágoras obedece al hecho de que la orden que él estableció era comunal y secreta. El conocimiento y la propiedad eran comunes, de manera tal que la atribución de los descubrimientos no se le hacía a alguien en particular, sino que era considerado patrimonio del grupo. Es por eso que es mejor no hablar del trabajo de Pitágoras, sino de las contribuciones de «los pitagóricos».

EL TEOREMA DE PITÁGORAS
Hace muchos años, Carmen Sessa, mi amiga y extraordinaria referente en cualquier terna que tenga que ver con la matemática, me acercó un sobre con varias demostraciones del Teorema de Pitágoras. No recuerdo de dónde las había sacado, pero ella estaba entusiasmada al ver cuántas maneras distintas había de comprobar un mismo hecho. Es más: tiempo después supe que hay un libro (The Pythagorean Proposition) que contiene 367 pruebas de este teorema y que fue reeditado en 1968.
De todas formas, y volviendo a las pruebas que me había dado Carmen, hubo una que me dejó fascinado por su simpleza. Mas aún: a partir de ese momento (última parte de la década del 80) nunca paro de repetirla. Y de disfrutarla. Aquí va:
Se tiene un triángulo rectángulo T, de lados a, b y h. (Se llama triángulo rectángulo a un triángulo en el que uno de los ángulos es de 90 grados, también llamado ángulo recto.)

Imaginemos que el triángulo T está hecho «pegando» tres hilos. Supongamos que se le puede «cortar» el lado h, y que uno puede «estirar» los lados a y b.
Con este nuevo «lado», de longitud (a+b), fabricamos dos cuadrados iguales. Cada lado del cuadrado mide (a+b). Marcamos en cada cuadrado los lados a y b, de manera tal de poder dibujar estas figuras:

Ahora, observemos en cada cuadrado cuántas veces aparece el triángulo T (para lo cual hay que marcar en un dibujo los cuatro triángulos T en cada cuadrado).

Como los cuadrados son iguales, una vez que hemos descubierto los cuatro cuadrados en cada uno de ellos, la superficie que queda «libre» en cada uno tiene que ser la misma.
En el primer cuadrado, quedan dos «cuadraditos» de superficies a 2 y b 2 respectivamente. Por otro lado, en el otro cuadrado, queda dibujado un «nuevo» cuadrado de área h 2 .
Conclusión: «tiene» que ser

a 2 + b 2 = h 2

que es justamente lo que queríamos probar: «en todo triángulo rectángulo se verifica que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos».
En este caso, los catetos son a y b, mientras que la hipotenusa es h.
¿No es una demostración preciosa? Es sólo producto de una idea maravillosa que no requiere ninguna herramienta complicada. Sólo sentido común.
Volver

7. Historia de Carl Friedrich Gauss
Muchas veces solemos decirles a los jóvenes que lo que están pensando está mal, simplemente porque no lo están pensando como lo pensamos nosotros. Así les enviamos un mensaje enloquecedor, equivalente al que hacemos cuando les enseñamos a hablar y caminar en los primeros doce meses de vida, para pedirles que se queden callados y quietos en los siguientes doce años.
El hecho es que esta historia tiene que ver con alguien que pensó diferente. Y en el camino, resolvió un problema en forma impensada (para el docente). La historia se sitúa alrededor de 1784, en Brunswick, Alemania.
Una maestra de segundo grado de la escuela primaria (de nombre Buttner, aunque los datos afirman que estaba acompañada por un asistente, Martin Bartels también) estaba cansada del «lío» que hacían los chicos, y para tenerlos quietos un poco, les dio el siguiente problema: «calculen la suma de los primeros cien números». La idea era tenerlos callados durante un rato. El hecho es que un niño levantó la mano casi inmediatamente, sin siquiera darle tiempo a la maestra para que terminara de acomodarse en su silla.
-¿Sí? -preguntó la maestra mirando al niño.
-Ya está, señorita -respondió el pequeño-. El resultado es 5.050.
La maestra no podía creer lo que había escuchado, no porque la respuesta fuera falsa, que no lo era, sino porque estaba desconcertada ante la rapidez.
-¿Ya lo habías hecho antes? -preguntó.
-No, lo acabo de hacer.
Mientras tanto, los otros niños recién habían llegado a escribir en el papel los primeros dígitos, y no entendían el intercambio entre su compañero y la maestra.
-Vení y contanos a todos cómo lo hiciste.
El jovencito, se levantó de su asiento y sin llevar siquiera el papel que tenía adelante se acercó humildemente hasta el pizarrón y comenzó a escribir los números:

1 + 2 + 3 + 4 + 5 +…+ 96 + 97 + 98 + 99 + 100

-Bien -siguió el jovencito-. Lo que hice fue sumar el primero y el último número (o sea, el 1 y el 100). Esa suma da 101.
-Después, seguí con el segundo y el penúltimo (el 2 y el 99). Esta suma vuelve a dar 101.
-Luego, separé el tercero y el antepenúltimo (el 3 y el 98). Sumando estos dos, vuelve a dar 101.
-De esta forma, «apareando» los números así y sumándolos, se tienen 50 pares de números cuya suma da 101. Luego, 50 veces 101 resulta en el número 5.050 que es lo que usted quería.
La anécdota termina aquí. El jovencito se llamaba Carl Friedrich Gauss. Nació en Brunswick, el 30 de abril de 1777 y murió en 1855 en Gottingen, Hanover, Alemania. Gauss es considerado el «príncipe de la matemática» y fue uno de los mejores (si no el mejor) de la historia.
De todas formas, no importa aquí cuán famoso terminó siendo el niñito, sino que lo que yo quiero enfatizar es que en general, uno tiende a pensar de una determinada manera, como si friera «lo natura U.
Hay gente que desmiente esto y encara los problemas desde un lugar diferente. Esto no significa que los vea así a todos los problemas que se le presentan, pero eso importa poco también.
¿Por qué no permitir que cada uno piense como quiera? Justamente, la tendencia en los colegios y las escuelas, e incluso la de los propios padres, es la de «domar» a los niños (en un sentido figurado, claro), en donde lo que se pretende es que vayan por un camino que otros ya recorrieron.
Es razonable que así sea, porque esto ofrece a los adultos, sin ninguna duda, mayores seguridades, pero inexorablemente termina por limitar la capacidad creativa de quienes todavía tienen virgen parte de la película de la vida.
Gauss y su manera sutil, pero elemental, de sumar los primeros cien números, son sólo un ejemplo.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *