Anillo de división

En álgebra, un anillo de división o cuerpo no conmutativo es un anillo unitario en el que todo elemento distinto de cero es invertible y por tanto una unidad. Es decir, si R es un anillo unitario y U(R) es su grupo de unidades, {\displaystyle U(R)=R\setminus \{0\}}.

Todo cuerpo es un anillo de división conmutativo. Es por ello que los anillos de división reciben también el nombre de cuerpos no conmutativos, puesto que esta es la única propiedad que los diferencia. Por el teorema de Wedderburn, todo anillo de división finito es un cuerpo finito.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *